Sains Malaysiana 52(10)(2023): 2943-2954
http://doi.org/10.17576/jsm-2023-5210-16
Model Reruang Magnitud Kecerahan Langit Di Balai Cerap KUSZA, Universiti Sultan Zainal Abidin (UNISZA)
(Spatial
Model of Sky Brightness Magnitude at Balai Cerap KUSZA, Universiti Sultan Zainal Abidin (UNISZA))
ROSLAN
UMAR1,*, MUHAMMAD ARIF IMRAN AHMAD AZAN2,
NOR HAZMIN SABRI3, NORHAYATI NGAH1,4, AHMAD NAJMUDDIN
ZULKEFLEE5, AHMAD EZZUDDIN MOHAMAD1, AHMAD SOLIHIN SIRA
JUDDIN1, MUSA GARBA ABDULLAHI6, NIK AHMAD FIRDAUS NIK WAN1,
NOR AIDA MAHIDDIN1,7, MOHD KHAIRUL AMRI KAMARUDIN8, MOHD
SAIFUL ANWAR MOHD NAWAWI2, LOH ING HOE9, CHONG JU LIAN3,
AHMAD LUTFI AFIFI MOHD NASIR1, AHMAD HARIZ BELY1 &
AHMAD SYAZNI KAMARUDIN4
1East Coast Environmental Research Institute (ESERI), Universiti Sultan Zainal Abidin (UniSZA), Gong Badak Campus, 21300
Kuala Nerus, Terengganu, Malaysia
2Academy of Islamic Studies, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
3Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
4Faculty of Bioresources and
Food Industry, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, 22200 Besut,
Terengganu, Malaysia
5Jabatan Kemajuan Islam
Malaysia, Aras 6 & 7, Blok D, Kompleks Islam
Putrajaya (KIP), No. 3 Jalan Tun Abdul Razak, Presint 3,
62100 Putrajaya, Malaysia
6Department of Physics, Faculty of Science, Yusuf Maitama Sule University Kano,
Nigeria 700221 Kofar Nassarawa,
Kano Nigeria
7Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin (UniSZA), Besut Campus, 22200 Besut, Terengganu, Malaysia
8Faculty of Applied Social Sciences, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Nerus,
Terengganu, Malaysia
9School of Business and Management, RMIT University, Hồ Chí Minh, Vietnam
Diserahkan: 6 Julai 2023/Diterima: 10 Oktober 2023
Abstrak
Magnitud kecerahan langit merupakan antara aspek penting dalam bidang astronomi, terutama bagi cerapan astronomi optik yang memerlukan keadaan langit yang sangat gelap. Di Malaysia, terdapat banyak balai cerap rasmi dan persendirian yang digunakan bagi tujuan tersebut. Laporan kajian ini membincangkan berkenaan model taburan ruang (model reruang) bagi mendapatkan gambaran penuh magnitud kecerahan langit di sekitar Balai Cerap KUSZA (BCK) yang terletak di Kampung Merang, Setiu Terengganu. BCK dipilih dalam kajian ini kerana ia bukan sahaja merupakan lokasi rasmi bagi kerja-kerja pencerapan rukyah anak bulan baharu untuk penetapan takwim Islam (hilal), malah BCK juga menyediakan fasiliti bagi pengajaran dan pembelajaran (PdP) serta penyelidikan berkaitan astronomi dan astrofizik. Kajian ini penting bagi memastikan kelestarian cahaya gelap di BCK dan kawasan sekitarnya adalah releven dengan keperluan semasa. Magnitud kecerahan langit diukur pada waktu malam menggunakan alat pengesan cahaya (SQM) di beberapa lokasi sekitar BCK yang kemudiannya dibandingkan dengan data simulasi satelit. Seterusnya teknik interpolasi menggunakan Sistem Maklumat Geografi (GIS) dilakukan bagi menghasilkan peta model reruang kecerahan langit yang jelas menunjukkan kawasan langit gelap dan terang di BCK dan kawasan sekitarnya. Analisis data menunjukkan kewujudan beberapa lokasi langit cerah (penunjuk pencemaran cahaya) di sekitar kawasan BCK dengan nilai tertinggi adalah16.35 mag arcsec−2 (3.115×10-2 cd m-²) yang mungkin disebabkan oleh aktiviti manusia. Kecerahan langit di Balai Cerap KUSZA ialah 21.34 mag per arcsec−2 (3.144×10-4 cd m-²) dan merupakan antara titik paling gelap dalam kawasan BCK. Secara keseluruhan, data menunjukkan kawasan sekitar balai cerap masih selamat daripada pencemaran cahaya yang keterlaluan. Walau bagaimanapun, pencemaran cahaya tidak terkawal akan mengganggu gugat aktiviti cerapan. Oleh itu, peta model reruang yang dihasilkan ini dijangka dapat membantu penyelidik astronomi optik untuk memantau kadar pencemaran cahaya di BCK bagi tujuan penyelidikan astronomi umumnya dan rukyah hilal secara khususnya di
Malaysia.
Kata kunci: Alat pengesan cahaya; astronomi optik; kecerahan langit; pencemaran cahaya; Sistem Maklumat Geografi
Abstract
The magnitude of
sky brightness is one of the important aspects in the field of astronomy,
especially for optical astronomical observations that require an extremely dark
sky condition. In Malaysia, there are many official and private observatories
that are used for this purpose. This research report aims to provide a
comprehensive understanding of the sky brightness magnitude through a spatial
model around the Balai Cerap KUSZA (BCK) located in Kampung Merang, Setiu Terengganu. BCK was chosen in this study
because it is not only the official location for observing the new crescent
moon for the determination of the Hijri calendar (hilal),
but BCK also provides facilities for teaching and learning (T&L) as well as
research related to astronomy and astrophysics. This study is important in
ensuring that the sustainability of dark areas in BCK and its surrounding is
relevant to current needs. The magnitude of sky brightness is measured at night
using a light detector or Sky Quality Meter (SQM) in several locations around
BCK, which is then compared with satellite simulation data. Next, an
interpolation technique using the Geographical Information System (GIS) is
performed to produce a spatial model map of sky brightness that clearly depicts dark and bright sky areas in BCK and its surrounding areas. Data analysis
shows the existence of several clear sky locations (indicators of light
pollution) around the BCK area, with the highest value is 16.35 mag arcsec−2 (3.115×10-2 cd m-2), which may be caused by human activities.
The sky brightness at the KUSZA Observatory is 21.34 mag arcsec−2 (3.144×10-4 cd m-2) and is among the darkest points in
the BCK area. Overall, the data shows that the area around the observatory is
still safe from excessive light pollution. However, uncontrolled light
pollution can interfere the astronomy observation activities. Therefore, it is
expected that the resulting spatial model will assist optical astronomy
researchers in monitoring the level of light pollution in BCK for the purpose
of general astronomy research and the observation of the new crescent moon,
particularly in Malaysia.
Keywords:
Geographical Information System; light pollution; optical astronomy; sky
brightness; Sky Quality Meter
RUJUKAN
Abd Mutalib, A.H., Fadzly, N., Ahmad, A. & Nasir, N. 2015. Understanding
nesting ecology and behaviour of green marine turtles at Setiu,
Terengganu, Malaysia. Mar. Ecol. 36: 1003-1012.
https://doi.org/10.1111/maec.12197
Abidin, Z.Z., Umar, R., Ibrahim, Z.A., Rosli,
Z., Asanok, K. & Gasiprong,
N. 2013. Investigation on the frequency allocation for radio astronomy at the L
band. Publications of the Astronomical Society of Australia 30: e047.
Alvarado,
A., Esteller, M.V., Quentin, E. & Expósito, J.L. 2016. Multi-criteria decision analysis and
GIS approach for prioritization of drinking water utilities protection based on
their vulnerability to contamination. Water Resources Management 30:
1549-1566.
Bennie,
J., Davies, T.W., Inger, R. & Gaston, K.J. 2014.
Mapping artificial lightscapes for ecological
studies. Methods in Ecology and Evolution 5(6): 534-540.
Bernhardsen, T. 1999. Geographic
Information System. An Introduction. New York: John Wiley & Sons.
Cinzano, P. 2007. Report on sky quality meter, version
l. ISTIL Int. Report.
Cinzano, P. 2005. Night sky photometry with sky
quality meter. ISTIL Int. Rep. 9(1).
Cinzano,
P., Falchi, F. & Elvidge,
C.D. 2001. The first world atlas of the artificial night sky brightness. Monthly
Notices of the Royal Astronomical Society 328(3): 689-707.
Davies, T.W., Duffy, J.P., Bennie, J. & Gaston,
K.J. 2014. The nature, extent, and ecological implications of marine light
pollution. Frontiers in Ecology and the Environment 12(6): 347-355.
Faid, M.S., Husien, N., Shariff, N.N.M., Ali, M.O., Hamidi,
Z.S., Zainol, N.H. & Sabri,
S.N.U. 2016. Monitoring the level of light pollution and its impact on
astronomical bodies naked-eye visibility range in selected areas in Malaysia
using the sky quality meter. 2016 IEEE International Conference on
Industrial Engineering, Management Science and Application (ICIMSA). pp.
1-6.
Falchi, F., Cinzano, P., Duriscoe,
D., Kyba, C.C.M., Elvidge,
C.D., Baugh, K., Portnov, B.A., Rybnikova,
N.A. & Furgoni, R. 2016. The new world atlas of
artificial night sky brightness. Science Advances 2(6): e1600377.
Garstang, R.H. 1989. Night
sky brightness at observatories and sites. Publications of the
Astronomical Society of the Pacific 101(637): 306.
Gaston, K.J., Davies, T.W., Bennie, J. & Hopkins,
J. 2012. Reducing the ecological consequences of night‐time light
pollution: Options and developments. Journal of Applied Ecology 49(6):
1256-1266.
Idris, S.M.M. 2017. Move to legislate light pollution. The Star. https://www.thestar.com.my/opinion/letters/2018/10/09/move-to-legislate-light-pollution/
International
Dark Sky Reserve. DarkSky International.
https://darksky.org/what-we-do/international-dark-sky-places/all-places/?_select_a_place_type=international-dark-sky-reserve
(akses pada 6 September
2023).
Kamarudin, M.K.A., Toriman, M.E., Rosli, M.H., Juahir, H., Aziz,
N.A.A., Azid, A., Mohamed Zainuddin,
S.F. & Sulaiman, W.N.A. 2015. Analysis of meander
evolution studies on effect from land use and climate change at the upstream
reach of the Pahang River, Malaysia. Mitigation and Adaptation Strategies
for Global Change 20: 1319-1334.
Kazemi, H., Sadeghi, S. & Akinci, H.
2016. Developing a land evaluation model for faba bean cultivation using geographic information system and multi-criteria
analysis (A case study: Gonbad-Kavous region,
Iran). Ecological Indicators 63: 37-47.
Mahdian, M.H., Hosseini,
E. & Matin, M. 2001. Investigation of spatial
interpolation methods to determine the minimum error of estimation: Case study,
temperature and evaporation. Proc. 6th Int. Conf. GeoComputation. Vol. 24.
Model
Lighting Ordinance (MLO). 2011. International Dark Sky Association (IDA) and
the Illuminating Engineering Society of North America (IES).
Navara, K.J. & Nelson, R.J. 2007. The dark side of light
at night: Physiological, epidemiological, and ecological consequences. Journal
of Pineal Research 43(3): 215-224.
Ngetich, K.F., Mucheru-Muna, M., Mugwe, J.N., Shisanya, C.A., Diels, J. & Mugendi,
D.N. 2014. Length of growing season, rainfall temporal distribution, onset and
cessation dates in the Kenyan highlands. Agricultural and Forest Meteorology 188: 24-32.
Nozibul Haque, M., Shahid, S., Keramat, M. & Mohsenipour, M. 2016. GIS integration of hydrogeological
and geoelectrical data for groundwater potential modeling in the western part of greater Kushtia district of Bangladesh. Water Resources 43: 283-291.
Patat, F. 2003. UBVRI night sky brightness during sunspot
maximum at ESO-Paranal. Astronomy &
Astrophysics 400(3): 1183-1198.
Rich, C. & Longcore, T.
2013. Ecological Consequences of Artificial Night Lighting. Washington:
Island Press.
Rodrigo-Comino, J., Seeling,
S., Seeger, M.K. & Ries, J.B. 2021. Light
pollution: A review of the scientific literature. The Anthropocene Review 10(2): 367-392.
Sabri, N.H., Umar, R., Mokhtar, W.W., Adli, W.Z., Abidin, Z.Z., Ibrahim,
Z.A., Azid, A., Juahir, H., Toriman, M.E. & Kamarudin,
M.K.A. 2015. Preliminary study of vehicular traffic effect on radio signal for
radio. Jurnal Teknologi 75(1): 313-318.
Schulte-Römer, N., Meier, J., Söding, M.
& Dannemann, E. 2019. The LED paradox: How light
pollution challenges experts to reconsider sustainable lighting. Sustainability 11: 6160. https://doi.org/10.3390/su11216160
Schwarz,
H.E. 2003. Light Pollution: The Global View. Vol. 284. Springer
Science & Business Media.
Stachowitsch, M. 2023.
Timescales and perspectives are relative: shifting baselines and sea turtles.
In: Mathematics Online First Collections. Springer, Cham.
https://doi.org/10.1007/16618_2022_41
Tahar, M.R., Ahmad, N. & Ismail, N.U.R.H. 2020. Identifying
light pollution sources at two major observatories in Malaysia. Sains Malaysiana 49(2): 439-445.
Tahar, M. R., Kamarudin,
F., Umar, R., Kamarudin, M. K. A., Sabri, N. H., Ahmad, K., Abdul Rahim, S. & Baharim, M.S.A. 2017. Spatial model of sky brightness
magnitude in Langkawi Island, Malaysia. Research in Astronomy and
Astrophysics 17(4): 037.
Umar, R., Abidin, Z.Z.,
Ibrahim, Z.A., Rosli, Z. & Noorazlan,
N. 2014. Selection of radio astronomical observation sites and its dependence
on human generated RFI. Research in Astronomy and Astrophysics 14(2):
241.
Umar,
R., Awang, W.J., Berzanji,
S.N., Abd Majed, N.F., Kamarudin, M.K.A. & Abdullahi,
M.G. 2018. Spatial Model of sky brightness magnitude in KUSZA observatory, UniSZA. International Journal of Engineering &
Technology 7(2.15): 13-18.
Umar,
R., Hazmin, S.N., Abidin,
Z.Z. & Ibrahim, Z.A. 2015. How to deal with radio astronomy interference. 천문학논총 30(2): 691-693.
Yusri, Y., Karim, O.A., Toriman, M.E. & Kamarudin,
M.K.A. 2009. Aplikasi GIS dan simulasi banjir Sungai Siak Pekanbaru menggunakan XP-SWMM. Semesta Teknika 12(2): 157-166.
*Pengarang untuk surat-menyurat; email: roslan@unisza.edu.my
|